IMPACT OF CORRELATING CER RISK DISTRIBUTIONS
On A “REALISTIC” COST MODEL
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ABSTRACT

Risk and risk correlation papers generally use simplified cost models to demonstrate the message
of the paper. This paper uses a more typical cost model in terms of complexity, number of
elements and cost methodologies. The model was developed in Automated Cost Estimating
Integrated Tools (ACEIT) to illustrate a process for developing a cost estimating relationship
(CER), selecting an appropriate risk distribution, defining its bounds and assigning an
appropriate level of correlation between a CER and other CERs within the cost estimate. An
Excel utility is used to extract Latin Hypercube simulation information when running the risk
analysis and then use it to construct the correlation matrix that is achieved in the risk simulation
for selected elements of the work breakdown structure (WBS). Using this utility, we are able to
establish the correlation that exists in the model due to the functional relationships built into the
model and before the analyst applies correlation. The study then demonstrated that the
correlation developed in the simulation matches the correlation input by the analyst. A
systematic comparison is made to illustrate how correlation between the WBS cost elements and
the cost risk results are influenced as the analyst applies: correlation between WBS cost
elements, introduces risk distributions to the CER inputs, introduces correlation amongst the
CER input risk distributions and finally, adds a low level of correlation across all remaining
elements (some programs require this assumption). The results illustrated in the paper serve to
help the cost analyst visualize the impacts of his/her decisions as risk assumptions are layered
into a model.

The paper also provides an overview of how the user defines correlation within the ACE model
and insight into the ACE Group Strength algorithm (the method used within ACE to achieve the
user defined correlation). However, the focus of the paper is on the results and their
interpretation.
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INTRODUCTION

The purpose of this paper is to examine the impact of correlation on a cost estimate’s risk results.
Applying correlation can be a real challenge. What does the analyst do, for instance, if
correlation is known at one level but the model is built several levels lower? Completing an
entire correlation matrix for a ten element WBS may be feasible...but what if there are 500 or a
1000 elements? What about the functional relationships in the model? Should the analyst’s
applied correlation take precedence? This paper will address some, but not all of these issues by
way of a demonstration.

To set the stage for this discussion the key steps in creating the estimate will be reviewed first,
namely: building the work breakdown structure (WBS); populating the WBS with cost
estimating relationships (CERs); assigning risk distributions and bounds to each CER and their
inputs including any penalty factors for schedule and technical complexity; and finally assigning
appropriate correlations amongst the CERs and their inputs.

WORK BREAKDOWN STRUCTURE

Figure 1 illustrates the first four levels of a cost model created in the Automated Cost Estimator
(www.aceit.com). This model is used as the basis for the study presented in this paper.
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Figure 1: Sample Cost Model WBS
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COST ESTIMATING RELATIONSHIPS

Populating the lowest levels of the WBS elements with the appropriate cost estimating
relationships (CERs) is the next step. For this estimate, the WBS is populated with CERs from
the Unmanned Space Vehicle Cost Model (USCM). For further information on the USCM
CERs, you can request access at https://www.uscm8.com/Default.asp.

Figure 2 shows the data available at the USCM web site. In addition to the information shown,
the “Documents” folder contains an USCM model created in ACE that one can download to run
within the ACE Executive. If you do not have ACEIT, there is also a version of the model that
you can run via your browser (ACE not required on the local machine).
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Figure 2: USCM Data Available on the Web

If you are unable to gain access to the Figure 2 web site, there is a public domain web site
http://www.jsc.nasa.gov/bu2/PCEHHTML/pceh220.htm that provides a dated but still relevant
overview of how the USCM CERs have been developed.
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The regression analysis process that yields the CER will also yield an objective measure of the
CER error for a specified confidence level and position within the source data set. Table 1
contains typical results that are available when a CER is generated in COSTAT (the statistics
application in the ACEIT suite of tools). The bounds on the estimate for a specific confidence
level are influenced by it’s the distance from the data set center of gravity. Note that the
standard error of the CER 1is greater at the lower and upper bounds than mid range of the data.

Table 1: Typical Regression Analysis Results from COSTAT

Unity = 92.93 + 27.39 = Wt Lower Mid Upper
RM2Ad) = 96% Bound of | Range of |Bound of
Mean Absolute Deviation = 7% Data Data Data
Input ¥Wveight (1bs) 4 15 23
Confidence Level (%) 0% 80% 830%
Point Estimate Standard Error 48.5 44.6 48.6
Lower Bound $134 $441 $654
Estimate $202 $504 $723
Upper Bound F271 $567 $792
Bounds For RI$K

Lower Bound BE% 87% 0%
Upper Bound 134% 113% 110%

Figure 3 illustrates the 80% and 99% confidence interval bounds on a CER. Note that one of the
data points is outside the 80% confidence level. The analyst can use CO$STAT to calculate
uncertainty bounds based on inputs associated with the alternative under investigation.
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Figure 3: Accuracy of the Cost Estimating Relationship
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CHOOSING RISK DISTRIBUTIONS AND BOUNDS

Having developed a CER, the analyst must now choose a distribution shape and ensure it is
properly defined in order to model the uncertainty associated with the CER. If a CER is
developed in COSTAT, the user will be able to paste it and its documentation into the ACE
model. During this process, ACE will apply a normal distribution to model risk for CERs
containing an additive error term (e.g. linear) and log-normal for CERs containing a
multiplicative error term (e.g. non-linear). The analyst is then free to make a subjective selection
from any of the other available distribution forms: uniform, triangular, beta, or weibull.

The most common method used in ACE to define the distribution shape is to set the upper and
lower bounds. We recommend that users enter the bounds as a % of the point estimate. That
way all the bounds will move consistent with the point estimate under consideration. ACE
requires the user to also specify the confidence level that the bounds represent. ACE will derive
the entire distribution from this information. Figure 4 illustrates how the shape and spread of a
triangular distribution is modeled in ACE based upon bounds that are 70% of the point estimate
for the low and 160% for the high and their interpretation is either 0-100%, 10-90% or 5-95%.
Note, the interpretation of low and high bounds need not be symmetrical.
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Figure 4: Impact of Bounds Interpretation on How a is Distribution Modeled

COSTAT will generate statistically derived prediction intervals for use as the bounds of the
distribution based upon user defined CER input(s) and a selected confidence level. To calculate
the bounds information for export to ACE, CO$TAT uses the following equation:

—\2 2
(xo - xj ( distance J
adj. SE = SE*\[1+ 118 5 ) _ gy L \sample sid
n n n n
where
Xo = the value of the independent variable used in the estimate
X = the mean of the independent variable in database
Sy = uncorrected sample standard dev of the independent variable
n = the number of data points
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The distance assessment need only be characterized in terms of a number of standard deviations
the estimate cost driver value is from the center of the CER source driver data. For example, if

you assess the distance to be within approximately 2 sample standard deviations of the driver

variable, then the ratio (of “distance” to “sample std””) becomes 2. However, the ACE user is not
required to run the prediction interval calculation in CO$STAT. For simplicity, we also establish

some default values to address the assessment of this ratio based upon the similarities between

the system to be estimated and the systems used to generate the CER:
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Figure 5: Establishing Risk in the ACE Estimate

Figure 5 illustrates the COSTAT user interface to set the distribution shape and bounds. The
dialog will open with defaults based on the CER type but allow the analyst to make a subjective
assessment on shape, bounds and interpretation. For greater control, the user can enter specific
bounds/interpretation based upon a prediction interval calculation conducted in CO$TAT.

Figure 6 shows RI$K options and some cost element settings for one of the study models.
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Figure 6: Establishing Risk in the ACE Estimate
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CHOOSING PENALTY FACTORS

Schedule and technology risk assumptions can be modeled as penalty factors in RISK. These
factors affect the distribution tail on the high end. Penalty factors can be used to simulate the
effect on program cost estimates of extraordinary schedule and technical difficulties. This is
germane primarily to development efforts, except that there are a few occasions in production
efforts where these considerations are important.

The problem in deriving penalty factors that can reflect independent and separate assessments of
schedule and technical difficulties is that there are no normative, quantitative measures of
schedule or technical difficulty, either separately or in combination. It is difficult to separate
cost/schedule overrun into causative sources of technical and pure schedule difficulties as in the
performance of a project technical difficulties manifest themselves to a great degree in schedule
extensions that have cost consequences. The multipliers provided as guidance in ACE Help are
recommended for use in cases where the analyst has no better information upon which to base
the choice of a multiplier to capture the effects of extraordinary schedule or technical
uncertainty. Our studies strongly indicate that each major class of hardware should have its own
set of multipliers, but that would require a major research effort to develop highly quantitative
factors. If an analyst has relevant information in a specific risk assessment, we recommend the
use of that information to specify the penalty factors rather than reliance on the defaults.

There is another matter involving the use of these factors in the RISK model: the requirement for
penalty factors to be applied element-by-element throughout the WBS. Penalty factors are more
correctly applied at the bottom line. If they are applied selectively to elements in the WBS so that
some elements are not modified by these factors, then the effect at the bottom line will be less
than if the factor had been applied at the bottom line. This suggests that the factors for individual
elements should even be greater in magnitude, or that once the level of uncertainty has been
decided upon, the factors should be applied uniformly to all WBS elements. The analyst must
choose the application method that best reflects his knowledge of the case. In our case, we
elected to not use any penalty factors.

CORRELATED RISK DISTRIBUTIONS: THEORETICAL BASIS FOR
THE ACE METHOD

To set the stage for the main focus of this paper, we will begin by reviewing the two commonly
used correlation coefficients to measure the association between two random variables:
Pearson’s Product Moment Correlation and Spearman’s Rank Order Correlation. We will then
review the Laurie-Goldberg' method for simulating random numbers in a risk analysis and then
describe the process used in ACE.

Pearson’s Product Moment Correlation

The most common measure of correlation is Pearson’s Product Moment Correlation (called
Pearson's correlation for short). Pearson's correlation reflects the degree of linear relationship
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between two sets of numbers. The formula for Pearson's correlation takes on many forms. A
few commonly used formulas are shown below:

(X -X)(Y-Y) or ny XY-» XY

T Eaxr Ty BN O SE e PO SN EoNas)

or
r:& where: ZX=X_”
n o
n = number of ordered pairs
c = standard deviation
L = mean
X = first variable of an ordered pair
Y second variable of an ordered pair

ACEIT uses the Pearson’s definition to model correlations in risk simulations.

Spearman’s Rank Order Correlation

Spearman’s rank order correlation is used as a nonparametric test statistic to determine if two
random variables are independently distributed. However, the correlation formula is applied to
the ranks rather than the original variable values. Therefore, no assumptions are made about the
underlying distributions. When Spearman’s correlation is significantly different from zero, it
can be interpreted that there is an association between two variables, just like the ordinary
Pearson product-moment correlation.

To calculate the Spearman Rank Order correlation, replace the value of each X by the value of its
rank compared to all the other X’s in the sample. The resulting list of numbers will be members
of a perfectly known distribution, namely the uniform distribution of integers between 1 and N,
inclusive. If some of the ranks are identical, all of the “ties” are assigned the mean of the ranks
that they would have had if their values had been slightly different. In this situation, some of the
ranks could be partial integers. In all cases the sum of all assigned ranks will be the same as the
sum of the integers from 1 to N, namely N(N + 1)/2. Let Ri be the rank of Xi among the other
X’s, Si be the rank of Yi among the other Y’s, ties being assigned the appropriate midrank as
described above. The rank-order correlation coefficient is defined to be the linear correlation
coefficient of the ranks, and is computed as follows:

3w -Rr)y(s-3)
L SR -RP 3 (s - S)
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If there are no ties in the ranking, then the equation can be reduced to:

_6%d”

* n*(n*-1)
where:
d = difference between the paired ranks
n = number of paired ranks

Both Crystal Ball and @Risk use Spearman’s rank order correlation to model correlations that is
useful if the underlying distributions are not normal. Rank order correlation is also easier to
simulate than Pearson’s correlation, but it is not appropriate for cost risk analyses®. Spearman’s
correlation measures the monotonicity between two random variables. For example, if two
random variables are perfectly increasing monotonically as Y = X'°, then the Spearman’s
correlation between X and Y is 1.0. This measure is not suitable for dealing with the correlations
that may exist in the work breakdown structures (WBS) in our business because the variance of
the sum (or any linear transformation) of the random variables used to create the cost estimate is
related to the Pearson’s correlation, not the Spearman’s correlation.

Lurie-Goldberg’s Simulation Method!

The Lurie-Goldberg algorithm uses Pearson’s product moment correlation in the simulation
process and starts from a method known as Cholesky’s decomposition. Let us assume a set of n
variables, Y1, Y, ... and Y, are associated with the marginal distribution functions, F;, F,, ...
and F,, respectively, and they are also correlated by the following correlation matrix:

L pn P - P
P12 1 P23 - P
CoviY)=|pi3 Pz 1 . p3,

pln 10211 p3n . 1

The main steps in the Lurie-Goldberg’s (LG) method are given below:

1. Generate n independent draws, Z1, Z2, ... and Zn, from a standard normal distribution, i.e.,
N(0,1).

2. Construct n correlated standard normal random variables X, X», ... and X, using Cholesky’s
factorization matrix (L):
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X1221
2
Xy =pnZi+\l-pn" Z,
3 1= oY1= o2y — _ P
X, = pa Zl+p23 P12P13 Zz+\/( P12 M= pi137) = (P23 = P12P13) Z

\/1—,0122 \/1_,0122

(i.e., X = LZ such that LL’ = Cov(Y))
3. Apply the standard normal CDF function to each X variable to derive the corresponding
uniform correlated draws:

X,
Ui:

4. Invert the above uniform draws by the user-defined marginal distribution Fi:

-1
Y, =F " (U))
5. TIterate over the Cholesky’s factorization matrix (L), go back to step 2, and repeat the process
until the desired level of correlations is achieved.

In step 2, correlation is introduced by using Cholesky’s decomposition method to a set of
independent normal random variables. After applying Cholesky’s method, these correlated
normal random variables are then transformed into correlated uniform random variables using
their cumulative distribution functions (see step 3 above). The correlated uniforms are then
converted into the correlated random variables of the desired marginal distribution functions.
Since non-linear transformations are involved in the process, the correlations among the WBS
elements will differ from the correlation among the normal distributions constructed by
Cholesky’s method. The final step is to iterate on the Cholesky’s factors to achieve the desired
correlations among the WBS elements. This way, both the marginal distributions (i.e., the shape
of the distribution: triangular, beta, log-normal, etc.) and the correlation structure are preserved.

ACE/RISK Simulation Method

ACE uses a modified Lurie-Goldberg algorithm to create a set of random variables that match
the user-supplied correlations. The differences between ACE and the Lurie-Goldberg methods
are given below:

1. ACE only allows the user to enter a single vector of correlation coefficients where the
correlations are relative to the dominant cost driver in a particular “Group” of WBS
elements. By doing this, the remaining members of the correlation matrix are “implied” (and
therefore consistent) and the algorithm is simplified.
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2. ACE uses ranks during the simulation process to smooth out the resulting variables to make
them suitable for the Latin-Hypercube (LH) simulation. Ranking in this context is for the
purpose of generating the LH draws such that they closely resemble the original input
distributions, and it should not be confused with rank order correlation.

3. ACE does not iterate on the user supplied “Group Strengths” to achieve the desired
correlations among the WBS elements. Nonetheless, in our test cases the user-defined group
strengths match the desired correlations very closely, all within 0.5%.

The general steps for the ACE/RISK algorithm are listed below for the purpose of comparing
with the LG method. We will use the general assumptions as given above except Y; is now
assumed to be a dominant item in the group and the pairwise correlation between Y; and Y, is
p; fori=2,...,n.

1. Generate n independent draws, Z, Z,, ... and Z,, from a standard normal distribution, i.e.,
N(O,1).

2. Construct n correlated standard normal random variables X, X», ... and X, using Cholesky’s
pairwise factorization formula:

/ 2
Xy =py Zi+1=-py" 2,

/ 2
Xy=p3 2y +1-p5" Z;

Xn = Pn Zl+ Vl_pn2 Zn

(Note: If no dominant item is identified within a given group and Y; is assigned by a

correlation of p;,then X| = p; Z, +4/1— ,012 Z,', just as the rest of the X variables. Here
7’ is arandom draw for X; and Z, is a random draw for this group)

3. Generate the corresponding uniform LH draws for the X; variables consistent with the
normal cumulative probability for each of the X values.

4. Invert the above uniform draws by the user-defined marginal distribution Fi:
-1
Y, =F " (U;)

ACE requires the user to specify only a vector of pairwise correlations across the WBS elements
of a specific group. In this way, a consistent matrix is generated that simplifies the LG method
(removes requirement to test for consistency). ACE starts like the LG method by taking the
random draws and applying the Cholesky’s method. However, instead of using the normal CDF
to derive the percentiles associated with the correlated normal draws, ACE orders the normal
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draws to achieve the uniformed correlated draws (see step 3 above). The final step of inverting
the uniform draws by the user-defined marginal distribution is the same.

This method is simple, there is no need to iterate, marginal distributions are preserved, and the

desired correlations are achieved. Our tests do not reveal significant differences in results if you
go to the trouble of defining a complete, even inconsistent, correlation matrix.

CORRELATED RISK DISTRIBUTIONS: A STUDY CONDUCTED IN ACE

A small section in the cost model was singled out for detailed analysis. Table 2 identifies the
case names used in this study and the risk assumptions associated with them.

Table 2: Systematic Layering of Risk Assumptions

Cost Method Risk Configuration Risk
Low Low
Correlation | Correlation Correlation | Correlation

Risk on All |on Selected| on all other| Risk on All |on Selected| on all other
Case Name CERs CER Risk CERs Inputs Input Risk Inputs
NoRiskOnWBSRiskOnInputs X
NoRiskOnWBSCorOnlInputs X X
NoRiskOnWBSCorOnlnputs+Low X X X
RiskOnWBSNoRiskOnInputs X
RiskOnWBSRiskOnInputs X X
RiskOnWBSCorOnlnputs X X X
CorOnWBSNoRiskOnInputs X X
CorOnWBSRiskOnlnputs X X X
CorOnWBSCorOninputs X X X X
CorOnWBSCorOnlnputs+LowWBS X X X X X
CorOnWBSCorOnlnputs+LowAllElse X X X X X X

Figure 6 illustrates how the “CorOnWBSCorOnlnputs” case was modeled. A “D” is assigned to
the dominant element in the Group (“GimbalWBS” for the CERs, “Gimballnputs” for the weight
inputs). The remaining values in the Group Strength column are the pairwise correlations
between an element and the associated dominate element in the Group.

i3 ACE - [51b3cCorOnWBSCorOnInputsSpaceSys.acu - RISK (BY2003 $K)] =10l x|
[ifl Eile Edit Workzoreen Input Cale Eeports Tools Windaw Help =18 x|
DEE SR 4 2R EEE+= @ B|Rmw ] 82
L)S” \f||j(5;,IIDI|TeIescope structure wt
P - - Distribution | Low or | High or - Group I;l
WBS/CES Description | Unique ID | Equation { Throughput | BASELINE | Form Low % | High% Grouping Strength
32 Gimbal 17341.8¢
33 Gimbal Structure 70.215 * GIMBALSTRWwT “0.830 2966.0¢ LogMarmal 50% 150% | Gimbahw/'BS 3 o
34 Motor Drive Electronics Aokt Triangular 0% 150%  GimbahwBS ki)
35 LOS Camputer 256.878*L0SCOMPTUDEWT 7089.8* Triangular 80% 150% | GimbalwBS i}
36 1ML electionics 256,878 IMUPMATUDEWT 64733 Triangular 80% 160% | Gimbalw/'B5 3
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Figure 7: Assigning Correlation to Selected Elements
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The ACE methodology assumes that the remaining elements in the full correlation matrix will be
the product of the associated inputs (Gimbal Structure to IMU electronics would be 30% * 90%
=27%). This is a simplifying assumption to be sure, but in our tests, a reasonable one.

Correlations Input Into ACE

Gimbal
Gimbal Structure 100% 15%| 30%] 27%
Motor Drive Electronics 100%] 50%| 45%
LOS Computer D 90%
IMU electronics 90%] 100%

Figure 8: Complete Correlation Matrix Developed by ACE.

The gray cells Figure 8 represent the correlation entered into the model. To measure correlation
achieved in the ACE risk simulation, Tecolote created a utility in Excel (available upon request)
to capture user selected results for each iteration of the risk simulation. The Excel function
“CORREL?” is used to calculate the Pearson Correlation coefficient between selected elements in
the estimate and build the associated full correlation matrix. Figure 9 shows the 3 screens in this
utility populated with the results from one of the cases defined in Table 2.
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Figure 9: ACE Correlation Utility
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The ACE methodology differs from others in that ACE does not “iterate” through the simulation.
The final step of the ACE method may “change” the correlation values, i.e. the correlations
between the X; variables are “correct,” but those between the Y; variables are different if the
relationship between X; and Y; is not linear. This may be a reason why methods such as Laurie-
Goldberg iterate to a solution. The ACE Correlation Utility was used to determine if this was a
problem in the way ACE implements correlation and if not, how many risk simulation iterations
are required to approach the input correlations.

Correlations Input Into ACE 25 lterations

Gimbal Gimbal
Gimbal Structure 100% 15%[ 30%| 27%| | Gimbal Structure 100%  15%| -8%| -8%
Motor Drive Electronics 100%| 50%| 45% Motor Drive Electronics 100%| 43%] 48%
LOS Computer D 90% LOS Computer 100%| 88%
IMU electronics 90%] 100% IMU electronics 100%

100 Iterations 500 Iterations

Gimbal Gimbal
Gimbal Structure 100% 8%] 10% 8% Gimbal Structure 100% 13%| 27%| 23%
Motor Drive Electronics 100%] 33%| 30% Motor Drive Electronics 100%] 46%] 42%
LOS Computer 100%| 89% LOS Computer 100%| 91%
IMU electronics 100% IMU electronics 100%

2000 Iterations 10000 Iterations

Gimbal Gimbal
Gimbal Structure 100% 11%] 28%] 25% Gimbal Structure 100% 15%] 29%] 26%
Motor Drive Electronics 100%] 48%] 43% Motor Drive Electronics 100%] 46%] 41%
LOS Computer 100%| 89% LOS Computer 100%] 90%
IMU electronics 100% IMU electronics 100%

Compare ACE Generated Correlation to Input Compare ACE Generated Correlation to Input

100% T g nput ngijj wipat | _________]

i 90% | @ 25 lterations
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o 80% 1§ 500 fterations
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10%

5%

0%
IMU electronics -5%
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-10%

Cost Element Corelation to LOS Computer Cost Element Corelation

Figure 10: Tabular and Graphical Comparison of Correlation Input to Output

Figure 10 illustrates how the developed correlation compares to the inputs as the number of
simulation iterations is increased. 500 iterations appear sufficient to replicate the input vector,
however 2000 or more may be required in order to establish the implied correlations. The
conclusion we have drawn from this and many other tests is that ACE does in fact replicate the
intended correlations reasonably well in most cases. The results for the Motor Drive (46% at
10k iterations rather than the input 50% gives us pause and may be another indicator why
iterating may be required if greater accuracy is needed.
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Figure 11, shows how the cumulative cost probability curve for various iterations compares to
the 10k iteration cost risk result. Risk is applied on 35 cost rows (four are correlated under the
Gimbal element, the remaining 30 are assigned a low correlation) and 31 input weights (four
driving the Gimbal children are correlated, the remaining 27 are assigned a low correlation).
Note that for the Gimbal (specific correlation applied) and for the total cost (mix of correlations
involved) there is little difference between the 500, 2000 and 10k iteration cost results.

Impact of Gimbal Risk Cost Results Due to Number of Iterations

Impact of Space System Risk Cost Results Due to Number of
(WBS Child Elements Correlated, Correlated Inputs)

Iterations
100% (Gimble WBS & Inputs Correlated, Low Correlation Everywhere Else)
— ———Gimbal 25 Total System 25
90% - P g e T | S otal System
- = - - Gimbal 100

DO s A N I | R Total System 100

go% | | ® GmbalS0 .\ - g el B Total System 500
e  Gimbal 2,000 ® Totals
ystem 2,000

70% - Gimbal 10,000 Total System 10,000

- -7,
60% +————-—————————#-"@f - -~~~
.
50%

40% -

Confidence Level
Confidence Level

30%
20%

10% -

0%
0%
$14,000 $15,000 $16,000 $17,000 $18,000 $19,000 $20,000 $21,000 $22,000 $23,000 $24,000 $25,00 $440,000 $460,000 $480,000 $500,000 $520,000 $540,000 $560,001
FY2003 $K

FY2003 $K

Figure 11: Cost Results Using Different Number of Simulation Iterations

The ACE Correlation Utility results show no functional correlations in the Gimbal cost elements.
As seen in Figure 12, the correlation matrix is populated with values less than a few percent for
the case where risk is applied to both CERs and inputs.

RiskOnWBSRiskOnlnputs
Gimbal Structure 100% 0% 0% 0%
Motor Drive Electronics 100% 0% 0%
LOS Computer 100% -1%
IMU electronics 100%

Figure 12: Correlation Results in the Model Before Group Strength is Applied

Figure 13 illustrates how correlation that is applied at the input level only and then at the CER
level only is manifested at the CER level in the risk simulation

RiskOnWBSCorOnlinputs
Gimbal Structure 100% 3% 10% 9%
Motor Drive Electronics 100% 13% 11%
LOS Computer 100% 40%
IMU electronics 100%
CorOnWBSNoRiskOnlnputs
Gimbal Structure 100% 15% 30% 28%
Motor Drive Electronics 100% 49% 44%
LOS Computer 100% 90%
IMU electronics 100%

Figure 13: Correlation Results in the Model After Group Strength is Applied
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Figure 14 illustrates the correlation developed as risk assumptions are layered on the estimate.
For instance, if no risk is applied at the CER (WBS) level, the correlation applied at the input
level is in fact developed at the CER level. Once risk at the CER level is added, the correlation
at the CER level is no longer the same as that applied at the inputs. This suggests that small
CER correlations measured in data sets could in fact be due to the correlation of inputs
rather then the CERs.

WBS Correlation Developed Under Different Risk Assumptions
100%

O NoRiskOnWBSCorOninputs
90% 11 @ RiskONWBSCorOninputs

80% + B RiskOnWBSStrongCorOninputs
O CorOnWBSNoRiskOninputs

O CorOnWBSRiskOninputs

B CorOnWBSCorOnlnputs

70%

60%

50%

40%

30% 7

Pearson Correlation With LOS
Computer

T
Gimbal Structure Motor Drive Electronics IMU electronics

WBS Cost Element

Figure 14: Correlation Results Under Different Risk Assumptions

Figure 15 illustrates how the risk cost results for the Gimbal changes as the risk assumptions are
layered on the estimate (10k iterations). The risk estimate is symmetrical about the 50%
confidence level when the only risk applied is at the input level. The chart also demonstrates that
for this estimate, cost risk is far more significant than configuration risk.

Impact of Risk and Correlation Assumptions on Gimbal Cost
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Figure 15: Gimbal Cost Results Under Different Risk Assumptions
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Figure 16 illustrates the results at the total cost level under different risk assumptions (10k
iterations). In this model, risk on the CERs has a greater impact than the risk on the inputs.
Interestingly, the point estimate “improves” from 12% to 30% confidence level when risk is
applied to the inputs. But the range in possible costs broadens significantly. Low level
correlation across all elements other than those associated with the Gimbal does have an impact,
but the impact at the 80% confidence level is only a few percent.

Impact of Risk and Correlation Assumptions on Total System Cost
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Figure 16: Total Cost Results Under Different Risk Assumptions

CONCLUDING REMARKS

Correlations applied at the WBS level will be affected if risk is then applied at the input level. If
correlations are found in the historical cost data, the analyst should not overlook that possibility
that the cost correlations are in fact the result of cost driver correlations.

The ACE Correlation Utility will give the analyst confidence that the correlations achieved in the
ACE RIS$K simulation are reasonably close to those that are input. Tecolote has completed
dozens of simple model comparisons with tools such as Crystal Ball and @Risk using a variety
of distribution and correlation assumptions (including full, inconsistent matrices in other tools).
In every case the ACE cost results match the other tools within a few percent at the 10% or 90%
confidence level. For the cost model studied in this paper, it was evident that correlation did not
have much of an impact at the total cost level. Models with hundreds of rows and/or greater
correlation may see a greater impact.
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